Difference between revisions of "Two-body DeepPot-SE"
| (14 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
{{Infobox descriptor  | |||
| name = Two-body DeepPot-SE (full)  | |||
| key = se_e2_a  | |||
| alias = se_a  | |||
| version = {{DeePMD-kit version|v0.8.2}}  | |||
| compression = {{ok}}  | |||
| ref = <ref name="zhang2018">Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, and E. Weinan. 2018. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS'18). Curran Associates Inc., Red Hook, NY, USA, 4441–4451.</ref>  | |||
}}  | |||
{{Infobox descriptor  | |||
| name = Two-body DeepPot-SE (radial-only)  | |||
| key = se_e2_r  | |||
| alias = se_r  | |||
| version = {{DeePMD-kit version|v1.0.0}}  | |||
| compression = {{not ok}}  | |||
}}  | |||
'''Two-body DeepPot-SE''' is a [[descriptor]] of the [[Deep Potential Smooth Edition]] (DeepPot-SE) constructed from two-body information of atomic configurations.<ref name="zhang2018"/> It has two versions: '''se_e2_a''' with full information and '''se_e2_r''' with radius-only information.  | |||
== Theory ==  | == Theory ==  | ||
The descriptor is given by  | The two-body DeepPot-SE descriptor is given by  | ||
<math>  | |||
\mathcal{D}^i = (\mathcal{G}^i)^T \mathcal{R}^i (\mathcal{R}^i)^T \mathcal{G}^i_<  | |||
</math>  | |||
where <math>\mathcal{R}^i \in \mathbb{R}^{N \times \{1,4\}}</math> is the coordinate matrix, and each row of <math>\mathcal{R}^i</math> can be constructed as one of the following forms  | |||
<math>  | |||
    (\mathcal{R}^i)_j =  | |||
    \begin{cases}  | |||
    \{  | |||
    \begin{array}{cccc}  | |||
    s(r_{ji}) & \frac{s(r_{ji})x_{ji}}{r_{ji}} & \frac{s(r_{ji})y_{ji}}{r_{ji}} & \frac{s(r_{ji})z_{ji}}{r_{ji}}   | |||
    \end{array}  | |||
    \}, &\text{full information}  \\  | |||
    \{  | |||
    \begin{array}{c}  | |||
    s(r_{ji})  | |||
    \end{array}  | |||
    \}, &\text{radial-only information}   | |||
    \end{cases}  | |||
    \label{eq:rij}  | |||
</math>  | |||
where <math>\mathbf{R}_{ji}=\mathbf{R}_j-\mathbf{R}_i = (x_{ji}, y_{ji}, z_{ji})</math> is the relative coordinate and <math>r_{ji}=\lVert \mathbf{R}_{ji} \lVert</math> is its norm. The [[switching function]] <math>s(r)</math> is defined as:  | |||
<math>  | |||
    s(r)=  | |||
    \begin{cases}  | |||
    \frac{1}{r}, & r<r_s \\  | |||
    \frac{1}{r} \{ {(\frac{r - r_s}{ r_c - r_s})}^3 (-6 {(\frac{r - r_s}{ r_c - r_s})}^2 +15 \frac{r - r_s}{ r_c - r_s} -10) +1 \}, & r_s \leq r<r_c \\  | |||
    0, & r \geq r_c  | |||
    \end{cases}  | |||
</math>  | |||
Each row of the embedding matrix <math>\mathcal{G}^i \in \mathbb{R}^{N \times M}</math> consists of outputs of a [[neural network]] function <math>\mathcal{N}</math> of <math>s(r_{ji})</math>:  | |||
<math>  | |||
    (\mathcal{G}^i)_j = \mathcal{N}(s(r_{ji}))  | |||
    \label{eq:G2}  | |||
</math>  | |||
where <math>\mathcal{G}^i_< \in \mathbb{R}^{N \times M_<}</math> takes first <math>M_<</math> columns of <math>\mathcal{G}^i</math>.  | |||
Both <math>M</math> and <math>M_<</math> are pre-defined parameters.  | |||
== References ==  | == References ==  | ||
Latest revision as of 14:24, 5 December 2021
| Key | se_e2_a | 
|---|---|
| Alias | se_a | 
| Supported version | v0.8.2 | 
| Model compression | |
| Reference | [1] | 
| Key | se_e2_r | 
|---|---|
| Alias | se_r | 
| Supported version | v1.0.0 | 
| Model compression | |
Two-body DeepPot-SE is a descriptor of the Deep Potential Smooth Edition (DeepPot-SE) constructed from two-body information of atomic configurations.[1] It has two versions: se_e2_a with full information and se_e2_r with radius-only information.
Theory
The two-body DeepPot-SE descriptor is given by
[math]\displaystyle{ \mathcal{D}^i = (\mathcal{G}^i)^T \mathcal{R}^i (\mathcal{R}^i)^T \mathcal{G}^i_\lt }[/math]
where [math]\displaystyle{ \mathcal{R}^i \in \mathbb{R}^{N \times \{1,4\}} }[/math] is the coordinate matrix, and each row of [math]\displaystyle{ \mathcal{R}^i }[/math] can be constructed as one of the following forms
[math]\displaystyle{ (\mathcal{R}^i)_j = \begin{cases} \{ \begin{array}{cccc} s(r_{ji}) & \frac{s(r_{ji})x_{ji}}{r_{ji}} & \frac{s(r_{ji})y_{ji}}{r_{ji}} & \frac{s(r_{ji})z_{ji}}{r_{ji}} \end{array} \}, &\text{full information} \\ \{ \begin{array}{c} s(r_{ji}) \end{array} \}, &\text{radial-only information} \end{cases} \label{eq:rij} }[/math]
where [math]\displaystyle{ \mathbf{R}_{ji}=\mathbf{R}_j-\mathbf{R}_i = (x_{ji}, y_{ji}, z_{ji}) }[/math] is the relative coordinate and [math]\displaystyle{ r_{ji}=\lVert \mathbf{R}_{ji} \lVert }[/math] is its norm. The switching function [math]\displaystyle{ s(r) }[/math] is defined as:
[math]\displaystyle{ s(r)= \begin{cases} \frac{1}{r}, & r\lt r_s \\ \frac{1}{r} \{ {(\frac{r - r_s}{ r_c - r_s})}^3 (-6 {(\frac{r - r_s}{ r_c - r_s})}^2 +15 \frac{r - r_s}{ r_c - r_s} -10) +1 \}, & r_s \leq r\lt r_c \\ 0, & r \geq r_c \end{cases} }[/math]
Each row of the embedding matrix [math]\displaystyle{ \mathcal{G}^i \in \mathbb{R}^{N \times M} }[/math] consists of outputs of a neural network function [math]\displaystyle{ \mathcal{N} }[/math] of [math]\displaystyle{ s(r_{ji}) }[/math]:
[math]\displaystyle{ (\mathcal{G}^i)_j = \mathcal{N}(s(r_{ji})) \label{eq:G2} }[/math]
where [math]\displaystyle{ \mathcal{G}^i_\lt \in \mathbb{R}^{N \times M_\lt } }[/math] takes first [math]\displaystyle{ M_\lt }[/math] columns of [math]\displaystyle{ \mathcal{G}^i }[/math].
Both [math]\displaystyle{ M }[/math] and [math]\displaystyle{ M_\lt }[/math] are pre-defined parameters.
References
- ↑ 1.0 1.1 Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, and E. Weinan. 2018. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS'18). Curran Associates Inc., Red Hook, NY, USA, 4441–4451.